Hydroxymethylglutaryl Coenzyme A Reductase Inhibitor Simvastatin Prevents Cardiac Hypertrophy Induced by Pressure Overload and Inhibits p21 ras Activation

Author:

Indolfi Ciro1,Di Lorenzo Emilio1,Perrino Cinzia1,Stingone Angela Maria1,Curcio Antonio1,Torella Daniele1,Cittadini Antonello1,Cardone Luca1,Coppola Carmela1,Cavuto Luigi1,Arcucci Oreste1,Sacca Luigi1,Avvedimento Enrico Vittorio1,Chiariello Massimo1

Affiliation:

1. From the Division of Cardiology (C.I., A. Curcio), Magna Graecia University, Catanzaro; Division of Cardiology (E.D.L., C.P., A.M.S., D.T., C.C., L. Cavuto, O.A., M.C.), Department of Medicine (A. Cittadini., L.S.), and Department of Biology and Molecular and Cellular Pathology (L. Cardone, E.V.A.), University Federico II, Naples, Italy.

Abstract

Background— Patients with cardiac hypertrophy are at increased cardiovascular risk. It has been hypothesized that hydroxymethylglutaryl coenzyme A reductase inhibitors may exert beneficial effects other than their cholesterol-lowering actions. The aims of the study were to assess the in vivo effects of simvastatin (SIM) on cardiac hypertrophy and on Ras signaling in rats with ascending aorta banding. Methods and Results— Wistar rats were randomized to receive either treatment with SIM or placebo, and then short-term (group I) and long-term (group II) left ventricular pressure overload was performed by placing a tantalum clip on ascending aorta. At the end of treatment period, left and right ventricular weight, body weight, and tibial length were measured and echocardiographic evaluations were performed. Ras signaling was investigated by analyzing Ras membrane localization and activation, ERK2 phosphorylation, and p27 kip1 and cdk4 levels. In SIM-treated rats, a significant reduction of left ventricular weight/body weight, echocardiographic left ventricular mass, and left ventricular end-diastolic diameter and end-diastolic pressure was found. In rats with pressure overload, SIM treatment significantly reduced Ras membrane targeting, Ras in vivo activation, ERK2 phosphorylation, and the ratio cdk4/p27 kip1 . Conclusions— HMG CoA inhibitor SIM inhibits in vivo Ras signaling and prevents left ventricular hypertrophy development in aortic-banded animals.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3