Medications for specific phenotypes of heart failure with preserved ejection fraction classified by a machine learning-based clustering model

Author:

Sotomi Yohei,Hikoso ShungoORCID,Nakatani Daisaku,Okada Katsuki,Dohi Tomoharu,Sunaga Akihiro,Kida Hirota,Sato Taiki,Matsuoka Yuki,Kitamura TetsuhisaORCID,Komukai Sho,Seo Masahiro,Yano Masamichi,Hayashi Takaharu,Nakagawa Akito,Nakagawa Yusuke,Tamaki Shunsuke,Ohtani Tomohito,Yasumura Yoshio,Yamada Takahisa,Sakata Yasushi

Abstract

ObjectiveOur previously established machine learning-based clustering model classified heart failure with preserved ejection fraction (HFpEF) into four distinct phenotypes. Given the heterogeneous pathophysiology of HFpEF, specific medications may have favourable effects in specific phenotypes of HFpEF. We aimed to assess effectiveness of medications on clinical outcomes of the four phenotypes using a real-world HFpEF registry dataset.MethodsThis study is a posthoc analysis of the PURSUIT-HFpEF registry, a prospective, multicentre, observational study. We evaluated the clinical effectiveness of the following four types of postdischarge medication in the four different phenotypes: angiotensin-converting enzyme inhibitors (ACEi) or angiotensin-receptor blockers (ARB), beta blockers, mineralocorticoid-receptor antagonists (MRA) and statins. The primary endpoint of this study was a composite of all-cause death and heart failure hospitalisation.ResultsOf 1231 patients, 1100 (83 (IQR 77, 87) years, 604 females) were eligible for analysis. Median follow-up duration was 734 (398, 1108) days. The primary endpoint occurred in 528 patients (48.0%). Cox proportional hazard models with inverse-probability-of-treatment weighting showed the following significant effectiveness of medication on the primary endpoint: MRA for phenotype 2 (weighted HR (wHR) 0.40, 95% CI 0.21 to 0.75, p=0.005); ACEi or ARB for phenotype 3 (wHR 0.66 0.48 to 0.92, p=0.014) and statin therapy for phenotype 3 (wHR 0.43 (0.21 to 0.88), p=0.020). No other medications had significant treatment effects in the four phenotypes.ConclusionsMachine learning-based clustering may have the potential to identify populations in which specific medications may be effective. This study suggests the effectiveness of MRA, ACEi or ARB and statin for specific phenotypes of HFpEF.Trial registration numberUMIN000021831.

Funder

Roche Diagnostics

Fuji Film

Toyama Chemical Co. Ltd

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3