Vessel Imaging by Interferometric Phase-Contrast X-Ray Technique

Author:

Takeda Tohoru1,Momose Atsushi1,Wu Jin1,Yu Quanwen1,Zeniya Tsutomu1,Lwin Thet-Thet-1,Yoneyama Akio1,Itai Yuji1

Affiliation:

1. From the Institute of Clinical Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki (T.T., J.W., Q.Y., T.Z., T.-T.-L., Y.I.); the Department of Applied Physics, School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo (A.M.); and the Advanced Research Laboratory, Hitachi, Ltd, Hatoyama, Saitama (A.Y.), Japan.

Abstract

Background— Phase-contrast x-ray imaging using an x-ray interferometer has great potential to reveal the structures inside soft tissues, because the sensitivity of this method to hydrogen, carbon, nitrogen, and oxygen is ≈1000 times higher than that of the absorption-contrast x-ray method. Imaging of vessels is very important to understand the vascular distribution of organs and tumors, so the possibility of selective angiography based on phase contrast is examined with a physiological material composed of low-atomic-number elements. Methods and Results— Phase-contrast x-ray imaging was performed with a synchrotron x-ray source. Differences in refractive index, dδ, of physiological saline, lactated Ringer’s solution, 5% glucose, artificial blood such as pyridoxylated hemoglobin–polyoxyethylene conjugate, and perfluorotributylamine were measured. Because the dδ of physiological saline has highest contrast, it was used for the phase-contrast x-ray imaging of vessel, and this was compared with absorption-contrast x-ray images. Vessels >0.03 mm in diameter of excised liver from rats and a rabbit were revealed clearly in phase-contrast x-ray imaging, whereas the vessel could not be revealed at all by the absorption-contrast x-ray image. Absorption-contrast x-ray images with iodine microspheres depicted only portal veins >0.1 mm in diameter with nearly the same x-ray dose as the present phase-contrast x-ray imaging. Conclusions— Phase-contrast x-ray imaging explored clear depiction of the vessels using physiological saline with small doses of x-rays.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3