Differential Regulation of Vascular Focal Adhesion Kinase by Steady Stretch and Pulsatility

Author:

Lehoux Stéphanie1,Esposito Bruno1,Merval Régine1,Tedgui Alain1

Affiliation:

1. From INSERM U541, Hôpital Lariboisière, Paris, France.

Abstract

Background— In vivo tensile strain in arteries comprises 2 components: steady stretch and pulsatile stretch. However, little attention has been paid to the differential transduction of these stimuli in whole vessels. Methods and Results— Using rabbit aortas maintained in organ culture for 24 hours, we found that focal adhesion kinase (FAK) was strongly activated by high intraluminal pressure (150 mm Hg), as evidenced by increased phosphorylation ( P <0.01) of tyrosine residues Tyr-397 (3.06±0.17-fold), Tyr-407 (3.71±0.65-fold), Tyr-861 (1.92±0.33-fold), and Tyr-925 (2.41±0.39-fold), compared with 80 mm Hg controls. Immunohistochemistry showed positive staining for these phosphotyrosines in the endothelium and innermost smooth muscle cell layers. Total FAK phosphorylation was reduced in vessels at 150 mm Hg by treatment with the Src family kinase inhibitor PP2 or with the integrin–extracellular matrix interaction–blocking RGD peptide, attaining 1.75±0.22-fold and 2.00±0.19-fold, respectively ( P <0.05), compared with 3.07±0.38-fold ( P <0.001) in untreated vessels. PP2 prevented phosphorylation of Tyr-407 and Tyr-925, whereas RGD peptide abolished phosphorylation of Tyr-397 and Tyr-407. PP2 and RGD peptide also inhibited high pressure–induced binding of FAK with the effector Grb2 and blocked activation of extracellular regulated kinase (ERK) 1/2 in vessels at 150 mm Hg. In contrast, 10% cyclic stretch in aortas did not induce significant FAK phosphorylation relative to nonpulsatile controls. Furthermore, although ERK1/2 was activated in vessels exposed to pulsatility, it was not blocked by PP2 or RGD peptide treatment. Conclusions— Our results demonstrate that (1) steady and cyclic modes of stretch are transduced differently in the aorta, the former implicating FAK, the latter not, and (2) Src and integrins are involved in steady pressure–induced FAK.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3