Abstract
Background. The principle of photodynamic effect is based on the combined action of photosensitiser, molecular oxygen and light, which produce various reactive oxygen species and are associated with significant cellular damage. Singlet oxygen is one of the most serious representatives, which is characterised by powerful oxidising properties. Moreover, concomitant hyperbaric oxygen treatment can support these effects. Therefore, the subject of our study was to compare the yields of singlet oxygen for four different photosensitizers in dependency on the oxygen concentration.
Material and methods. Four different photosensitizers 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate), tetramethylthionine chloride, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc(II) and zinc phthalocyanine disulfonate were investigated to determine the yield of singlet oxygen in PBS by Singlet Oxygen Sensor Green reagent under different partial pressures of oxygen (0.4 and 36 mg/l).
Results. There were no noticeable shifts in the excitation and emission fluorescence spectra regarding the oxygen concentration. Concerning the same molar concentration of photosensitizers the production of singlet oxygen was highest for 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc(II), where the rate of the fluorescence change was more than 3 times higher than that obtained for 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate). On the other hand, zinc phthalocyanine disulfonate showed the lowest yield in singlet oxygen production.
Conclusions. Singlet oxygen production, within the range of oxygen concentrations achievable in tissues under normoxia or hyperoxia, does not depend on these concentrations. However, the singlet oxygen generation is significantly influenced by the type of photosensitizer, with the highest yield belonging to 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc(II).
Publisher
Poznan University of Medical Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献