Efficacy of Zinc Pyrithione as A Novel Anti-Bacterial Coating Agent

Author:

Jain Sumita,Chan Daniel,Khan Noufa,Park Yena,Cao Densen

Abstract

Zinc pyrithione (ZPT) is used to prevent microbial degradation and deterioration of manufacturing starting materials such as plastics, polymers, and latexes. The main objective of this study was to evaluate the anti-bacterial properties of ZPT. Currently, there is insufficient data on the effect of ZPT on viability of commonly encountered bacterial pathogens. We tested the efficacy of ZPT manufactured in the form of film rolls as an anti-bacterial protective layer by using the ASTM–recommended protocol on growth of <em>Enterococcus faecalis</em> and <em>Escherichia coli. </em>The bacterial cultures were added to three materials provided by Cao Inc. containing either the base with no active ingredient, ZPT-A, or different amounts of active ingredient, ZPT-B (2.5%) and ZPT-C (5%). Following overnight incubation, bacterial growth was assessed by counting their colony forming units (CFUs). Growth of both <em>E. faecalis</em> and <em>E. coli</em> were strongly inhibited by ZPT-B and ZPT-C relative to growth on the control ZPT-A. Inhibition of <em>E. faecalis</em> was close to complete by ZPT-B and ZPT-C while <em>E. coli</em> growth was inhibited by greater than 95% in a dose dependent manner. This is the first report of zinc pyrithione, here in the form of thin film, inhibiting growth of common bacterial pathogens. ZPT rolls therefore show promise as an effective antibacterial layer for use as a protective barrier, for example on door handles and counters, from clinical to global public health settings.

Publisher

LIDSEN Publishing Inc

Subject

General Medicine

Reference12 articles.

1. Dinning D, AL‐Adham AA, Austin A, Charlton C, Collier C. Pyrithione biocide interactions with bacterial phospholipid head groups. J Appl Microbiol. 1998; 85: 132-140.

2. Reeder NL, Xu J, Youngquist RS, Schwartz JR, Rust RC, Saunders CW. The antifungal mechanism of action of zinc pyrithione. Br J Dermatol. 2011; 165: 9-12.

3. European Commission, Directorate General for Health & Consumers. Opinion on zinc pyrithione: COLIPA n° P81 [Internet]. Luxembourg: European Commission; 2013 [cited date 2022 January 27]. Available from: http://dx.publications.europa.eu/10.2772/67588.

4. Tabbaa MM. Pyrithione zinc effect on cancer cell proliferation and viability. Athens: Ohio University; 2017.

5. Zhao C, Chen X, Yang C, Zang D, Lan X, Liao S, et al. Repurposing an antidandruff agent to treating cancer: Zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases. Oncotarget. 2017; 8: 13942-13956.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3