Remote Sensing Image Recognition Based on Multi-attention Residual Fusion Networks

Author:

Cai Weiwei1ORCID,Wei Zhanguo1ORCID,Liu Runmin2ORCID,Zhuang Yuan1ORCID,Wang Yan3ORCID,Ning Xin4ORCID

Affiliation:

1. Central South University of Forestry and Technology

2. Wuhan Sports University

3. Changsha Astra Information Technology Co., Ltd.

4. Institute of Semiconductors, Chinese Academy of Sciences

Abstract

Since each sample in a hyperspectral remote sensing image is made up of high-dimensional features and contains a wealth of remote sensing features, feature selection and mining become more difficult. To address this issue, a multi-attention residual integrated network (MARB-Net) algorithm is proposed, which reduces redundant features while increasing feature fusion and, as a result, improves hyperspectral image recognition. First, assign multiple weights to each feature using multiple attention mechanism models; then, deep mine and integrate the features using the residual network; and finally, perform contextual semantic integration on the deep fusion features using the Bi-LSTM network. The recognition task should be completed by the Softmax classifier. The experimental results on three multi-class public data sets show that the MARB-Net algorithm proposed in this paper is effective.

Publisher

Advancing Science Press Limited

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3