Affiliation:
1. Joint Institute for High Temperatures of the Russian Academy of Sciences; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences; Bauman Moscow State Technical University
Abstract
The article presents a theoretical analysis of the governing equations expressing the fundamental conservation laws in the continuum and discontinuum approximations, and methods for solving problems of hydrodynamics as one of the most important subfields of continuum mechanics. This article is an attempt to more accurately describe physicochemical macro-processes. It is shown that the most suitable equations for computer modeling are the conservation laws under natural constraints on the minimum spatial and time scales, i.e., equations without partial derivatives and constraints on the solution smoothness. Using the continuity and thermal conductivity equations, a phenomenological method for constructing and numerically solving the governing equations is presented, and comparison with the traditional approach is given.
Funder
Russian Foundation for Basic Research
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献