A Physical Insight into Computational Fluid Dynamics and Heat Transfer

Author:

Martynenko Sergey I.1ORCID,Varaksin Aleksey Yu.1ORCID

Affiliation:

1. Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia

Abstract

Mathematical equations that describe all physical processes are valid only under certain assumptions. One of them is the minimum scales used for the given description. In fact, this prohibits the use of derivatives in the mathematical models of the physical processes. This article represents a derivative-free approach for the mathematical modelling. The proposed approach for CFD and numerical heat transfer is based on the conservation and phenomenological laws, and physical constraints on the minimum problem-dependent spatial and temporal scales (for example, on the average free path of molecules and the average time of their collisions for gases). This leads to the derivative-free governing equations (the discontinuum approximation) that are very convenient for numerical simulation. The theoretical analysis of governing equations describing the fundamental conservation laws in the continuum and discontinuum approximations is given. The article demonstrates the derivative-free approach based on the correctly defined macroparameters (pressure, temperature, density, etc.) for the mathematical description of physical and chemical processes. This eliminates the finite-difference, finite-volume, finite-element or other approximations of the governing equations from the computational algorithms.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Basic Research

Scientific and the Technological Research Council of Türkiye

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3