On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral

Author:

Chernov A.V.1

Affiliation:

1. Nizhny Novgorod State University

Abstract

For piecewise continuous monotone functions defined on a bounded interval $[-b;b]$, a monotone smooth approximation $Q(x)$ of any prescribed accuracy in the metric of the space $\mathbf{C}(\Pi)$ with as small as desired measure of the difference $[-b;b]\setminus\Pi$, $\Pi\subset[-b;b]$, is constructed using translations and dilations of the Laplace function (integral). In fact, this extends to the case of piecewise continuous monotone functions the result (obtained by the author formerly) on arbitrarily exact in the metric of the space $\mathbf{C}[-b;b]$ monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral. Besides, we suggest a new way of approximation in the form of linear combination of translations and dilations of the Laplace integral. Finally, we give and discuss concrete numerical examples of using approximation ways under study for a piecewise constant (stepwise) monotone function and for a piecewise continuous monotone function. Here, we also compare the results obtained for two discussed ways of approximation.

Publisher

Udmurt State University

Subject

General Medicine,Linguistics and Language,Language and Linguistics,Education,General Decision Sciences,Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Education,General Medicine,General Medicine,General Physics and Astronomy,Cell Biology,Plant Science,Molecular Biology,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables;Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3