On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables

Author:

Chernov A.V.1

Affiliation:

1. Nizhny Novgorod State University

Abstract

A special class of approximations of measurable functions of several variables on the unit coordinate cube is investigated. The class is constructed on the base of Kolmogorov's theorem (in version by Sprecher–Golubkov) stating that a continuous function $f$ of several variables can be represented as a finite superposition of continuous single-variable functions — so called outer functions (which depend of $f$) and inner one $\Psi$ (which is independent of $f$ and is monotone). In the case of continuous functions $f$ the class under study is obtained with outer functions approximated by linear combinations of quadratic exponentials (also known as Gaussian functions or Gaussian kernels) and with the inner function $\Psi$ approximated by Laplace functions. As is known, a measurable function $f$ can be approximated by a continuous one (up to a set of small measure) with the help of classical Luzin's theorem. The effectiveness of such approach is based on assertions that, firstly, the Mexican hat mother wavelet on any fixed bounded interval can be approximated as accurately as desired by a linear combination of two Gaussian functions, and, secondly, that a continuous monotone function on such an interval can be approximated as accurately as desired by a linear combination of translations and dilations of the Laplace integral (in other words, Laplace functions). It is proved that the class of approximations under study is dense everywhere in the class of continuous multivariable functions on the coordinate cube. For the case of continuous and piecewise continuous functions of two variables, numerical results are presented that confirm the effectiveness of approximations of the studied class.

Publisher

Udmurt State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3