A model for the kinetics of high-temperature reactions between polydisperse volcanic ash and SO2 gas

Author:

Wadsworth Fabian B.1ORCID,Vasseur Jérémie2,Casas Ana Silvia2,Delmelle Pierre3,Hess Kai-Uwe2ORCID,Ayris Paul M.2,Dingwell Donald B.2

Affiliation:

1. Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, U.K.

2. Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Theresienstr. 41, 80333 Munich, Germany

3. Earth and Life Institute, Environmental Sciences, Université catholique de Louvain, L7.05.10, 1348 Louvain-la-Neuve, Belgium

Abstract

Abstract Rapid calcium diffusion occurs in rhyolitic volcanic ash particles exposed to hot SO2 atmospheres. Such chemical transport is important immediately following fragmentation, during proximal transport in eruption plumes and during percolative gas transport through a permeable volcanic edifice. Here we analyze published results of experiments designed to constrain the kinetics of this process. The experiments involve crushed rhyolitic glass particles tumbled in SO2-bearing atmospheres at a wide range of relevant temperatures. We find that the particle-gas reaction is fed by calcium diffusion from the bulk to the particle surfaces where calcium-sulfate crystals grow. The calcium flux is accommodated by local iron oxidation state changes. This process results in time-dependent concentrations of surface calcium that are leachable in aqueous solutions. Those leachate concentrations represent a proxy for the diffusive flux of Ca2+ out of the particle to form the surface deposits. We formulate a mathematical framework to convolve the starting particle size distributions with the solution to Fickian one-dimensional diffusion to find a weighted polydisperse result. Using this framework, we minimize for a temperature-dependent calcium diffusivity and compare our results with published calcium diffusivity data. We demonstrate that calcium diffusivity in rhyolite can be decomposed into two regimes: (1) a high-temperature regime in which the diffusivity is given by the Eyring equation and (2) a low-temperature regime more relevant to rhyolite volcanism and these gas-ash reactions. As a further test of our model, we compare the output against spatially resolved data for the calcium gradients in the experimental particles. Our analysis suggests that surface reaction rates are rapid compared with the diffusion of calcium from the particle to the surface, such that full diffusion models must be solved to predict the rhyolite-SO2 reaction. We conclude by suggesting how this framework could be used to make quantitative predictions of sulfur budgets and iron oxidation during rhyolitic eruptions.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3