Dehydration‐driven mass loss from packs of sintering hydrous silicate glass particles

Author:

Vasseur Jérémie1ORCID,Wadsworth Fabian B.2,Lavallée Yan1,Dingwell Donald B.1

Affiliation:

1. Earth & Environmental Sciences Ludwig‐Maximilians‐Universität Munich Germany

2. Earth Sciences Durham University, Science Labs Durham UK

Abstract

AbstractGlass sintering involves the densification of packs of particles and the expulsion of the interparticle pore gas. The pore space begins as a convolute interconnected interparticle network, and ends as distributed isolated bubbles; two configurations that are separated by the percolation threshold. Here, we perform experiments in which (i) the particles are initially saturated in H2O at 871 K, and (ii) they are then heated non‐isothermally at different rates to temperatures in excess of 871 K. In step (ii), H2O becomes supersaturated and the particles diffusively lose mass as they sinter together. We use thermogravimetry to track the loss of mass with time. We find that the mass loss is initially well predicted by solutions to Fick's second law in spherical coordinates with the appropriate material and boundary conditions. However, as the sintering pack crosses the percolation threshold at a time predicted by sintering theory, we find that the mass loss deviates from simple diffusional solutions. We interpret this to be the result of an increase in the diffusion distance from the particle‐scale to the scale of the sintering pack itself. Therefore, we conclude that the open‐ to closed‐system transition that occurs at the percolation threshold is a continuous, but rapid jump for diffusive and other transport properties. We use a capillary Peclet number Pc to parameterize for this transition, such that at low Pc diffusive equilibrium is achieved before the sintering‐induced transition to closed system, whereas at high Pcthere is a “diffusion crisis” and disequilibrium may be maintained for longer relative timescales that depend on the system size.

Funder

European Research Council

Natural Environment Research Council

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3