Oxalate formation by Aspergillus niger on minerals of manganese ores

Author:

Frank-Kamenetskaya Olga1,Zelenskaya Marina2,Izatulina Alina1,Gurzhiy Vladislav1,Rusakov Aleksei1,Vlasov Dmitry2

Affiliation:

1. Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab 7/9, 199034, St. Petersburg, Russia

2. Department of Biology, St. Petersburg State University, Universitetskaya Nab 7/9, 199034, St. Petersburg, Russia

Abstract

Abstract Microscopic fungi (micromycetes) play an important role in rock alteration, often leading to the formation of insoluble biogenic oxalates on their surface. Oxalate crystallization under the influence of fungus Aspergillus niger (one of the most active stone destructors) was studied in vitro conditions on following Mn,Ca-bearing minerals of manganese ores: todorokite (Na0.36,Ca0.09,K0.06,Sr0.03, Ba0.02)0.56(Mn5.53,Mg0.47)O12∙3–4H2O and kutnohorite (Ca0.77,Mn0.23)(Mn0.74,Fe0.14,Mg0.11)(CO3)2. The underlying minerals and the products of their alteration were investigated via powder and single-crystal X-ray diffraction, optical microscopy, SEM and EDX methods. It was shown that more intense leaching of Ca-ions (compared to Mn-ions) from todorokite and kutnohorite leads to an earlier crystallization of calcium oxalates (predominantly whewellite) compared to manganese (lindbergite, falottaite). Crystallization of manganese oxalates on the surface of kutnohorite occurs in a more acidic (compared to todorokite) medium through the formation of mycogenic Mn,Ca-bearing oxides, which are close in composition and structure to todorokite. The possibility of structural evolution within the manganese oxalate crystalline phases caused by hydration and dehydration processes, which are responsible for changes in proportions of lindbergite and falottaite, derives from the similarities of falottaite and lindbergite crystal structures. The amorphization of falottaite in the temperature range of 70–80 °C suggests that formation of linbergite by falottaite dehydration occurs via amorphous precursor. The result can be used for developing efficient biotechnologies using fungi for industrial enrichment of poor manganese ores and environmental bioremediation.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3