Crystal Chemistry of the Copper Oxalate Biomineral Moolooite: The First Single-Crystal X-ray Diffraction Studies and Thermal Behavior

Author:

Kornyakov Ilya V.12ORCID,Gurzhiy Vladislav V.1ORCID,Kuz’mina Mariya A.1,Krzhizhanovskaya Maria G.1ORCID,Chukanov Nikita V.3,Chislov Mikhail V.4,Korneev Anatolii V.1,Izatulina Alina R.1ORCID

Affiliation:

1. Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia

2. Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Kola Science Centre, Russian Academy of Sciences, Fersmana 14, 184209 Apatity, Russia

3. Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia

4. Center of Thermal Analysis and Calorimetry, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia

Abstract

Moolooite, Cu(C2O4)·nH2O, is a typical biomineral which forms due to Cu-bearing minerals coming into contact with oxalic acid sources such as bird guano deposits or lichens, and no single crystals of moolooite of either natural or synthetic origin have been found yet. This paper reports, for the first time, on the preparation of single crystals of a synthetic analog of the copper-oxalate biomineral moolooite, and on the refinement of its crystal structure from the single-crystal X-ray diffraction (SCXRD) data. Along with the structural model, the SCXRD experiment showed the significant contribution of diffuse scattering to the overall diffraction data, which comes from the nanostructural disorder caused by stacking faults of Cu oxalate chains as they lengthen. This type of disorder should result in the chains breaking, at which point the H2O molecules may be arranged. The amount of water in the studied samples did not exceed 0.15 H2O molecules per formula unit. Apparently, the mechanism of incorporation of H2O molecules governs the absence of good-quality single crystals in nature and a lack of them in synthetic experiments: the more H2O content in the structure, the stronger the disorder will be. A description of the crystal structure indicates that the ideal structure of the Cu oxalate biomineral moolooite should not contain H2O molecules and should be described by the Cu(C2O4) formula. However, it was shown that natural and synthetic moolooite crystals contain a significant portion of “structural” water, which cannot be ignored. Considering the substantially variable amount of water, which can be incorporated into the crystal structure, the formula Cu(C2O4)·nH2O for moolooite is justified.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3