Experimental quantification of the Fe-valence state at amosite-asbestos boundaries using acSTEM dual-electron energy-loss spectroscopy

Author:

Vigliaturo Ruggero1,Pollastri Simone2,Gieré Reto13,Gualtieri Alessandro F.4,Dražić Goran5

Affiliation:

1. Department of Earth and Environmental Science, University of Pennsylvania, 240 South 33rd Street, Hayden Hall, Philadelphia, Pennsylvania 19104-6316, U.S.A. Orcid 0000-0001-6957-5396

2. CERIC–ERIC, Strada Statale 14-km 163.5, 34149 Basovizza, Trieste, Italy

3. Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, U.S.A.

4. Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, I-41125, Modena, Italy

5. Department for Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia

Abstract

Abstract Determination of the oxidation state and coordination geometry of iron in Fe-bearing minerals expands our knowledge obtained by standard mineralogical characterization. It provides information that is crucial in assessing the potential of minerals to interact with their surrounding environment and to generate reactive oxygen species, which can disrupt the normal function of living organisms. Aberration-corrected scanning transmission electron microscopy dual-electron energy-loss spectroscopy (acSTEM Dual-EELS) has only rarely been applied in environmental and medical mineralogy, but it can yield data that are essential for the description of near-surface and surface mechanisms involved in many environmental and health-related processes. In this study, we have applied the energy loss near-edge structure (ELNES) and L2,3 white-line intensity-ratio methods using both the universal curve and progressively larger integrating windows to verify their effectiveness in satisfactorily describing the valence state of iron at amosite grain boundaries, and, at the same time, to estimate thickness in the same region of interest. The average valence state obtained from acSTEM Dual-EELS and from a simplified geometrical model were in good agreement, and within the range defined by the bulk and the measured surface-valence states. In the specific case presented here, the use of the universal curve was most suitable in defining the valence state of iron at amosite grain boundaries. The study of ELNES revealed an excellent correspondence with the valence state determined by the L2,3 white-line intensity-ratio method through the use of the universal curve, and it seems that the spectra carry some information regarding the coordination geometry of Fe. The combination of visual examination, reconstruction of the grain boundaries through a simple geometrical model, and Dual-EELS investigation is a powerful tool for characterizing the grain boundaries of hazardous minerals and foreseeing their potential activity in an organism, with the possibility to describe toxic mechanisms in a stepwise fashion.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3