Trace element and isotopic (S, Pb) constraints on the formation of the giant Chalukou porphyry Mo deposit, NE China

Author:

Zhao Qingqing1ORCID,Zhai Degao12,Williams-Jones Anthony E.2,Liu Jiajun2ORCID

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China

2. Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 0E8, Canada

Abstract

Abstract Porphyry-type Mo deposits have supplied most of the Mo to the world. However, the source of the Mo and the controls on its enrichment in such deposits is still a matter of great debate. In this study, we present in situ trace element and isotopic data for a giant porphyry Mo deposit (the Chalukou Mo deposit in NE China) and use these data to address these issues. Three primary paragenetic stages of mineralization were recognized at Chalukou: (Stage I) K-feldspar + quartz + minor pyrite (Py-I) + minor molybdenite (Mol-I); (Stage II) quartz + sericite + molybdenite (Mol-II) + pyrite (Py-II); (Stage III) quartz + chlorite + epidote + fluorite + pyrite (Py-III) + galena + sphalerite + minor chalcopyrite. The bulk of the molybdenite was deposited in Stage II. In situ S isotope analyses of the sulfide ores show that the δ34S values vary from –5.2 to +7.8‰ (mean = +2.9‰) and correspond to δ34SH2S values from –2.4 to +3.3‰ (mean = +1.1‰). These values are consistent with a magmatic source for the sulfur. In situ Pb isotope compositions of the sulfide ores are almost identical to those of the local Mesozoic granites and other magmatic-hydrothermal ore deposits in this region, suggesting a close genetic association between the Mo mineralization and felsic magmatism. Pyrite from the three stages of mineralization differs significantly in its trace element composition. The first generation, Py-I, has a high Cu content (8.7 ± 49.6 ppm; where the first value is the median and the second is the standard deviation) and Mo content (6.9 ± 3.8 ppm). Pyrite-II has the lowest Cu concentration (1.3 ± 2.1 ppm) and a relatively high Mo concentration (5 ± 128 ppm), and Py-III has a high Cu content (8.7 ± 37.1 ppm) but the lowest Mo content (0.05 ± 5.7 ppm). From this, we infer that pyrite recorded the chemical evolution in the Mo/Cu ratio of the ore fluid and that this ratio reached a maximum in Stage II, coinciding with the widespread saturation of the fluid in molybdenite. The evolution of the Mo/Cu ratio in pyrite implies that the fluid was undersaturated in chalcopyrite at the high temperature of Stage I, despite the Cu concentration of the fluid apparently being at its high level, and chalcopyrite only saturated later, at a lower temperature. Molybdenite, however, because of its lower solubility, saturated early (Stage I) and in the subsequent stage (Stage II) was supersaturated in the fluid. There is a significant enrichment of Mo in the syn-ore intrusions at Chalukou compared to the pre-ore monzogranite. The very low Sr/Y ratios for the Chalukou syn-ore intrusions, which are in sharp contrast to the high Sr/Y ratios of the pre-ore monzogranite and those of porphyries related to Cu deposits, suggest that fractional crystallization of plagioclase may have been a key factor in generating the syn-ore magmas. Molybdenum is a highly incompatible metal and will concentrate in the crust, and assimilation of old continental crust, therefore, may explain the Mo enrichment of the syn-ore intrusions and ultimately the formation of the giant Chalukou deposit.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3