A systematic assessment of the diamond trap method for measuring fluid compositions in high-pressure experiments

Author:

Rustioni Greta1,Audétat Andreas1,Keppler Hans1

Affiliation:

1. Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany

Abstract

Abstract A variety of experimental techniques have been proposed to measure the composition of aqueous fluids in high-pressure experiments. In particular, the “diamond trap method,” where the fluid is sampled in the pore space of diamond powder and analyzed by laser-ablation ICP-MS after the experiment, has become a popular tool. Here, we carried out several tests to assess the reliability of this method. (1) We prepared several capsules loaded with fluid of known composition and analyzed the fluid by laser-ablation ICP-MS, either (a) after drying the diamond trap at ambient condition; (b) after freezing and subsequent freeze-drying; and (c) after freezing and by analyzing a frozen state. Of these methods, the analysis in the frozen state (c) was most accurate, while the results from the other two methods were poorly reproducible, and the averages sometimes deviated from the expected composition by more than a factor of 2. (2) We tested the reliability of the diamond trap method by using it to measure mineral solubilities in some well-studied systems at high pressure and high temperature in piston-cylinder runs. In the systems quartz-H2O, forsterite-enstatite-H2O, and albite-H2O, the results from analyzing the diamond trap in a frozen state by laser-ablation ICP-MS generally agreed well with the expected compositions according to literature data. However, in the systems corundum-H2O and rutile-H2O, the data from the analysis of the diamond trap were poorly reproducible and appeared to indicate much higher solubilities than expected. We attribute this not to some unreliability of the analytical method, but instead to the fact that in these systems, minor temperature gradients along the capsule may induce the dissolution and re-precipitation of material during the run, which causes a contamination of the diamond trap by solid phases. (3) We carried out several tests on the reliability of the diamond trap to measure fluid compositions and trace element partition coefficients in the eclogite-fluid system at 4 GPa and 800 °C using piston-cylinder experiments. The good agreement between “forward” and “reversed” experiments—with trace elements initially either doped in the solid starting material or the fluid—as well as the independence of partition coefficients on bulk concentrations suggests that the data obtained are reliable in most cases. We also show that the rate of quenching/cooling has little effect on the analytical results, that temperature oscillations during the run can be used to enhance grain growth, and that well-equilibrated samples can be obtained in conventional piston-cylinder runs. Overall, our results suggest that the diamond trap method combined with laser-ablation ICP-MS in frozen state yields reliable results accurate within a factor of two in most cases; however, the precipitation of accessory minerals in the diamond trap during the run may severely affect the data in some systems and may lead to a gross overestimation of fluid concentrations.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3