The single-crystal diamond trap (SCDT): a new method to determine the composition of high-P–T fluids

Author:

Abeykoon SumithORCID,Audétat Andreas

Abstract

AbstractIn view of recently reported discrepancies in mineral solubility results obtained with the classical diamond trap method, an alternative approach to quantify the composition of high P–T fluids was developed. In this approach the high P–T fluids are trapped in laser-drilled holes within single-crystal diamond plates and subsequently analyzed by LA–ICP–MS using the same pit size as the one that was used to drill the holes, which allows more rigorous testing of the data reproducibility than in the case of the classical diamond trap, where the fluid resides in a large, open network. To reduce the spikiness of the LA–ICP–MS signals and minimize element fractionation, the aqueous solution within the holes was allowed to evaporate, and the solid residue was melted to a glass. Because this results in the partial loss of the internal standard elements that are usually used for quantifying the LA–ICP–MS signals we developed a new quantification procedure that works without any internal standard in the fluid but instead uses the carbon signal produced by the epoxy that was filled into the holes after melting the precipitates. The new method was first tested on holes filled with epoxy resins doped with known amounts of chemicals, then on holes filled with known amounts of minerals that were subsequently melted, and finally on real high P–T mineral solubility experiments at 1.0 GPa and 700–900 °C in the quartz–H2O and olivine–enstatite–H2O systems, for which reliable reference data exist. In all 15 experiments the measured concentrations agree within 1–21% (avg. 13%) with the reference values. In contrast, four mineral solubility experiments that were performed at identical conditions with the classical diamond trap method returned concentrations that deviated by 7–56% (avg. 28%) from the reference value. Furthermore, a strong fractionation effect that has been observed during the ablation of albite + H2O in a classical diamond trap is efficiently prevented in our single-crystal diamond trap (SCDT) approach. On the downside, we observe significant mobility of alkalies during the melting step in our approach.

Funder

Deutsche Forschungsgemeinschaft

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calculating partition coefficients of trace elements to model Earth's interior processes;Reference Module in Earth Systems and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3