Siwaqaite, Ca6Al2(CrO4)3(OH)12·26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan

Author:

Juroszek Rafał1,Krüger Biljana2,Galuskina Irina1,Krüger Hannes2,Vapnik Yevgeny3,Galuskin Evgeny1

Affiliation:

1. Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-205 Sosnowiec, Poland

2. Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria

3. Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel

Abstract

Abstract A new mineral, siwaqaite, ideally Ca6Al2(CrO4)3(OH)12·26H2O [P31c, Z = 2, a = 11.3640(2) Å, c = 21.4485(2) Å, V = 2398.78(9) Å3], a member of the ettringite group, was discovered in thin veins and small cavities within the spurrite marble at the North Siwaqa complex, Lisdan-Siwaqa Fault, Hashem region, Jordan. This complex belongs to the widespread pyrometamorphic rock of the Hatrurim Complex. The spurrite marble is mainly composed of calcite, fluorapatite, and brownmillerite. Siwaqaite occurs with calcite and minerals of the baryte-hashemite series. It forms hexagonal prismatic crystals up to 250 μm in size, but most common are grain aggregates. Siwaqaite exhibits a canary yellow color and a yellowish-gray streak. The mineral is transparent and has a vitreous luster. It shows perfect cleavage on (1010). Parting or twinning is not observed. The calculated density of siwaqaite is 1.819 g/cm3. Siwaqaite is optically uniaxial (–) with ω = 1.512(2), ε = 1.502(2) (589 nm), and non-pleochroic. The empirical formula of the holotype siwaqaite calculated on the basis of 8 framework cations and 26 water molecules is Ca6.01(Al1.87Si0.12)Σ1.99[(CrO4)1.71(SO4)1.13(SeO4)0.40]Σ3.24(OH)11.63·26H2O. X-ray diffraction (XRD), Raman, and infrared spectroscopy confirm the presence of OH- groups and H2O molecules and absence of (CO3)2– groups. The crystal structure of this Cr6+-analog of ettringite was solved by direct methods using single-crystal synchrotron XRD data. The structure was refined to an agreement index R1 = 4.54%. The crystal structure of siwaqaite consists of {Ca6[Al(OH)6]2·24H2O}6+ columns with the inter-column space (channels) occupied by (CrO4)2–, (SO4)2–, (SeO4)2–, and (SO3)2– groups and H2O molecules. The tetrahedrally coordinated site occupied by different anion groups is subjected to disordering and rotation of these tetrahedra within the structure. The temperature of siwaqaite formation is not higher than~70–80 °C, as is evident from the mineral association and as inferred from the formation conditions of the natural and synthetic members of the ettringite group minerals, which are stable at conditions of T < 120 °C and pH = 9.5–13. The name siwaqaite is derived from the name of the holotype locality—Siwaqa area, where the mineral was found.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3