Uvarovite from Reduced Native Fe-Bearing Paralava, Hatrurim Complex, Israel

Author:

Futrzyński Jacek1,Juroszek Rafał1ORCID,Skrzyńska Katarzyna1,Vapnik Yevgeny2,Galuskin Evgeny1

Affiliation:

1. 1 Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Sosnowiec 41-205, Poland

2. 2 Department of Geological and Environmental Sciences, Ben-Gurion University of Negev, Beer-Sheva 84105, Israel

Abstract

Abstract A new genetic type of chromium garnet—uvarovite with the simplified formula Ca3(Cr,Al,Ti4+,V3+)2(Si,Al)3O12—was detected in unusual wollastonite-gehlenite-bearing paralava within the Hatrurim Complex in Israel. The pyrometamorphic rocks of that Complex usually formed in the sanidinite facies (low pressure and high temperature) and, as a rule, under oxidized conditions. This paralava contains nodules and grain aggregates of native Fe, usually distributed linearly in the rock or located close to gaseous voids. The presence of native iron droplets in association with the “meteoric” phosphide—schreibersite, suggests that the formation of paralava occurred under high-reducing conditions and high temperature, reaching 1500°C. Uvarovite forms xenomorphic grains either randomly distributed within the rock or flattened crystals on the walls of gaseous voids. Analyzed uvarovite indicates a significant enrichment in Ti4+ (up to 8 wt.% TiO2) and V3+ (up to 4.5 wt.% V2O3), the highest concentrations documented for uvarovite. Unlike known uvarovite from different localities, uvarovite from this study does not contain Fe3+, and Fe2+ is present in insignificant amounts. The obtained structural data reveal that the high contribution of hutcheonite, Ca3Ti4+2SiAl2O12 (up to 18%), and goldmanite, Ca3V3+2Si3O12 (up to 11%), end-members increases the lattice parameter a to >12.00 Å. The crystallization of uvarovite occurs in the narrow interval of oxygen fugacity, a little above the iron-wüstite buffer ƒO2 ≥ ΔIW. Uvarovite xenomorphic grains formed due to the decomposition of wollastonite and chromite, including H2S from the intergranular melt/fluid according to the following reaction: Ca3Si3O9 + Fe2+Cr3+2O4 + H2S → Ca3Cr2Si3O12 + FeS + H2O, while the flattened crystals grew from specific melt that formed on the walls of the voids as a result of exposure of hot gas flow. The comparison of the obtained results with available chemical data from previous studies reveals a gap in the natural isomorphic series between andradite and uvarovite.

Publisher

GeoScienceWorld

Subject

Geology

Reference65 articles.

1. “Nomenclature of the garnet Supergroup,”;Grew;American Mineralogist,2013

2. “Crystal structure of an Anisotropic Pyrope garnet that contains two cubic phases,”;Antao;Minerals,2021

3. “New chromium garnet end member, Knorringite, from Kimberlite,”;Nixon;American Mineralogist,1968

4. “Composition and origin of crystalline inclusions in natural diamonds,”;Meyer;Geochimica et Cosmochimica Acta,1972

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3