Porous Airfoils: Noise Reduction and Boundary Layer Effects

Author:

Geyer Thomas1,Sarradj Ennes1,Fritzsche Christoph1

Affiliation:

1. Aeroacoustics Group, Brandenburg University of Technology, 03046 Cottbus, Germany

Abstract

The present paper describes acoustic and hot–wire measurements that were done in the aeroacoustic wind tunnel at the Brandenburg University of Technology Cottbus on various SD7003–type airfoils made of different porous (flow permeable) materials. The objective of the research is the analysis of the turbulent boundary layer properties of porous airfoils and, subsequently, of the noise generated at the trailing edge. The influence of the porous materials, characterized by their air flow resistivity, is discussed. The acoustic measurements were performed using a planar 56–channel microphone array and the boundary layer properties were measured using constant temperature anemometry. The recorded acoustic data underwent further processing by application of advanced beamforming algorithms. A noticeable reduction of the emitted trailing edge noise was measured for the porous airfoils over a large range of frequencies. At high frequencies, some of the porous airfoils were found to generate more noise than the reference airfoil which might be due to the surface roughness noise contribution. It is found that the turbulent boundary layer thickness and the boundary layer displacement thickness of the airfoils increase with decreasing flow resistivities for both suction and pressure side. Both boundary layer thickness and displacement thickness of the porous airfoils are greater than those of a non-porous reference airfoil

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3