Aeroacoustic assessment of porous blade treatment applied to centrifugal fans

Author:

Biedermann Till M1ORCID,Scholz Max2,Chong Tze Pei2

Affiliation:

1. Faculty of Mechanical Engineering and Building Services Engineering, TH Nürnberg Georg Simon Ohm, Nuremberg, Germany

2. Department of Mechanical and Aerospace Engineering, Brunel University London, London, UK

Abstract

Heavy-duty centrifugal fans account for a significant share of energy consumption in the process and manufacturing industries. As a result, these machines are under increasing pressure to operate at maximum efficiency to reduce costs, pollutants and noise: only combined optimization is considered competitive for future generations of fans. Preliminary studies have shown that applying structured porosity to aerofoil rear parts can lead to a reduction in self noise and trailing edge shedding noise in the mid-to-high frequency range. With this in mind, a porous surface cover is applied to a prototype centrifugal fan to evaluate the aeroacoustic potential in a complex rotating machinery. The optimal geometric characteristics of the perforation are derived from experiments with single aerofoils, while the perimeter of the covered area is varied in eight steps. The centrifugal fan specimen is rapid-prototyped and tested at different fan speeds along the complete characteristic curves, while both aerodynamic and aeroacoustic performances are simultaneously recorded. The results obtained show a significant reduction in overall noise level while aerodynamic performance is maintained. Spectral analysis shows that the noise reduction is due to a broadband effect, where the upper and lower cut-off frequencies are determined by the rotational speed and the location of the applied porosity along the blade chord. However, the maximum noise reduction is obtained as a clear function of the minimum distance between the perforation and the trailing edge of the blade, indicating that the underlying working mechanisms are a combination of broadband dissipation effects due to porosity and destructive interference.

Funder

Engineering and Physical Sciences Research Council in the United Kingdom

Doctoral Training Partnership, UK

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3