The Source of Aerodynamic Noise

Author:

Lilley Geoffrey M.1

Affiliation:

1. School of Engineering Sciences, University of Southampton, SO17 1BJ, United Kingdom

Abstract

This paper is a tribute to Alan Powell's achievements and his extensive publications in hydro and aeroacoustics.1 The theory of Aerodynamic Noise was established by Sir James Lighthill in 1952. The beauty of Lighthill's treatment was that he based this theory on the exact Navier-Stokes equations and showed, by their rearrangement, how the source of aerodynamic noise could be obtained from exact time-accurate calculations or experiment. Lighthill used the emission or propagation theory whereby an observer in a uniform medium at rest receives acoustic radiation from a distribution of moving sources of sound. Their properties are found using an acoustic analogy. The relevant fluctuations in a turbulent fluid flow can be expressed in terms of Lighthill's stress tensor Tij, which is used to define a distribution of equivalent acoustic sources, which move through an otherwise uniform stationary fluid. An alternative procedure is to concentrate on the acoustic generation and to regard the sources of sound at rest or in motion in a uniform medium moving at a constant speed. (The approach can be extended to consider any arbitrary mean fluid motion.) The advantage of the present approach, involving the convective wave equation is that flow-acoustic interaction becomes part of the solution. In Lighthill's theory, flow-acoustic interaction is either ignored or at best is included as an equivalent source. The purpose of the present paper is to show there is no unique source of aerodynamic noise for it depends on the flow quantity used to describe the radiated sound. The convective wave equation is introduced and shown to involve similar sources to those found by Lighthill for the wave equation in a medium at rest. The source function found for the convective wave equation for a turbulent flow is shown to involve a modified Lighthill's stress tensor, which is non-linear in velocity and temperature fluctuations. It is further shown when the rate of dilatation covariance is examined, which can be derived from Lighthill's solution, that this small quantity, which Lighthill so carefully treated in retaining the exact properties of the compressible flow, is itself directly responsible for the rate of change of volume in the fluid and the creation of the noise which is radiated from the turbulent flow.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3