LES Prediction of Wall-Pressure Fluctuations and Noise of a Low-Speed Airfoil

Author:

Wang Meng1,Moreau Stephane2,Iaccarino Gianluca3,Roger Michel4

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

2. Valeo Thermal Systems, 78321 La Verriere, France

3. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

4. Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France

Abstract

This paper discusses the prediction of wall-pressure fluctuations and noise of a low-speed flow past a thin cambered airfoil using large-eddy simulation (LES). The results are compared with experimental measurements made in an open-jet anechoic wind-tunnel at Ecole Centrale de Lyon. To account for the effect of the jet on airfoil loading, a Reynolds-averaged Navier-Stokes calculation is first conducted in the full wind-tunnel configuration, and the mean velocities from this calculation are used to define the boundary conditions for the LES in a smaller domain within the potential core of the jet. The LES flow field is characterized by an attached laminar boundary layer on the pressure side of the airfoil and a transitional and turbulent boundary layer on the suction side, in agreement with experimental observations. An analysis of the unsteady surface pressure field shows reasonable agreement with the experiment in terms of frequency spectra and spanwise coherence in the trailing-edge region. In the nose region, characterized by unsteady separation and transition to turbulence, the wall-pressure fluctuations are highly sensitive to small perturbations and thus diffcult to predict or measure with certainty. The LES, in combination with the Ffowcs Williams and Hall solution to the Lighthill equation, also predicts well the radiated trailing-edge noise. A finite-chord correction is derived and applied to the noise prediction, which is shown to improve the overall agreement with the experimental sound spectrum.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3