Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics

Author:

Matouk Rabea1ORCID

Affiliation:

1. Bright Star University, P.O.Box 858, Mersa El-Brega, Libya

Abstract

The accurate prediction of the trailing-edge noise and the determination of its sources are essential to reduce fans and propellers noise. This noise component is due to the scattering of the turbulent boundary layer into acoustic waves by the trailing edge. In this paper, the noise emanating from a CD (Controlled-Diffusion) airfoil is simulated and computed via the hybrid methods of aeroacoustics. In these methods, the aerodynamic and acoustic fields are computed separately. The flow data are obtained using the in-house LES solver SFELES. ACTRAN acoustic solver has been used to solve the acoustics and to provide the near and far fields propagation via Lighthill’s analogy. Curle’s analogy is applied as well in its integral compact formulation which takes the presence of walls into account. Curle’s formulation is applied proposing an approach where the volume and surface integrals have been implemented in SFELES to be calculated simultaneously with the flow in order to avoid the storage of noise sources which requires a huge space. In Lighthill’s analogy, sources and near field maps show that the turbulent boundary layer and wake are the more efficient sources and the center of radiation is the trailing edge. The comparison of the numerical results with the experimental measurements, performed by Moreau and Roger and Moreau et al. , shows an overall excellent agreement confirming the capability of SFELES (LES sources) combined with ACTRAN (Lighthill’s analogy) to predict correctly the noise generated by turbulent flows around airfoils. The acoustic spectrum presents an overprediction up to 5 dB at the frequencies 300 Hz and 550 Hz and an underprediction about 5 dB at the frequencies 1100 Hz and 1750 Hz. The sound pressure level (SPL) obtained using the proposed approach of Curle’s analogy matches very well the experimental results. Thus, Curle’s analogy can be used to obtain a fast, approximated and acceptable results about the noise radiation of airfoils avoiding the storage of noise sources which requires a huge space and time.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3