Characterization of a Compliant-Backplate Helmholtz Resonator for An Electromechanical Acoustic Liner

Author:

Horowitz S.B.1,Nishida T.1,Cattafesta L.N.1,Sheplak M.1

Affiliation:

1. Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering, University of Florida, USA

Abstract

Passive acoustic liners are currently used to reduce the noise radiated from aircraft engine nacelles. This study is the first phase in the development of an actively-tuned electromechanical acoustic liner that potentially offers improved noise suppression over conventional multi-layer liners. The underlying technical concept is based on the idea that the fundamental frequency of a Helmholtz resonator may be adjusted by adding degrees of freedom (DOF) via substitution of a rigid wall with a piezoelectric composite diaphragm coupled to a passive electrical shunt network. In this paper, a Helmholtz resonator containing a compliant aluminum diaphragm is investigated to provide a fundamental understanding of this two DOF system, before adding complexity via the piezoelectric composite material. Using lumped elements, an equivalent circuit model is derived, from which the transfer function and acoustic impedance are obtained. Additionally, a mass ratio is introduced that quantifies the amount of coupling between the elements of the system. The theory is then compared to experiment in a normal-incidence impedance tube. The experimental results confirm the additional DOF and overall acoustic behavior but also suggest the need for a more comprehensive analytical model to accurately predict the acoustic impedance. Nevertheless, the experiments demonstrate the potential benefits of this approach for the reduction of aircraft engine noise.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3