The Performance of a High-Lift Airfoil in Turbulent Wind

Author:

Cao N.1,Ting D. S-K.2,Carriveau R.33

Affiliation:

1. Graduate Student, Mechanical, Automotive and Material Engineering

2. Professor, Mechanical, Automotive and Material Engineering, 401 Sunset Ave, Canada, N9B 3P4

3. Associate Professor, Civil and Environmental Engineering, 401 Sunset Ave, Canada, N9B 3P4

Abstract

The performance of a prospective candidate vertical axis wind turbine airfoil S1223 has been investigated at Reynolds numbers of 55,000, 75,000, and 100,000. The airfoil was tested at angles of attack from −5 to 25 deg in a quasi-isotropic turbulent flow generated using orificed plates. The independent effects of the turbulence intensity were examined with a constant integral length scale Λ/ c=0.14 (where c is the chord length). By increasing the turbulence intensity independently from 4.1 to 9.5%, the airfoil exhibits strong stall characteristics at low turbulence, whereas the stall behaviour becomes less obvious at high turbulence. The independent roles of integral length scale were examined by varying integral length Λ/ c from 0.14 to 0.23. The less turbulent free-stream with smaller length scales appears to delay the stall of the airfoil based on the observation of the lift and drag curve, implying that the smaller integral length under low turbulence intensity (4.1%) delays the boundary layer separation on the suction surface. At a higher turbulence of intensity 9.5%, the effect of varying Λ/ c from 0.08 to 0.15 only leads to subtle changes in the lift and drag.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3