Aerodynamic Characteristics of Different Airfoils under Varied Turbulence Intensities at Low Reynolds Numbers

Author:

Zhang YangORCID,Zhou Zhou,Wang Kelei,Li Xu

Abstract

A numerical study was conducted on the influence of turbulence intensity and Reynolds number on the mean topology and transition characteristics of flow separation to provide better understanding of the unsteady jet flow of turboelectric distributed propulsion (TeDP) aircraft. By solving unsteady Reynolds averaged Navier-Stokes (URANS) equation based on C-type structural mesh and γ - Re ˜ θ t transition model, the aerodynamic characteristics of the NACA0012 airfoil at different turbulence intensities was calculated and compared with the experimental results, which verifies the reliability of the numerical method. Then, the effects of varied low Reynolds numbers and turbulence intensities on the aerodynamic performance of NACA0012 and SD7037 were investigated. The results show that higher turbulence intensity or Reynolds number leads to more stable airfoil aerodynamic performance, larger stalling angle, and earlier transition with a different mechanism. The generation and evolution of the laminar separation bubble (LSB) are closely related to Reynolds number, and it would change the effective shape of the airfoil, having a big influence on the airfoil’s aerodynamic characteristics. Compared with the symmetrical airfoil, the low-Reynolds-number airfoil can delay the occurrence of flow separation and produce more lift in the same conditions, which provides guidance for further airfoil design under TeDP jet flow.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Review of electric power system of distributed electric propulsion aircraft;Kong;Acta Aeronaut. Astronaut. Sin.,2018

2. Turbo-electric distributed propulsion – opportunities, benefits and challenges

3. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number;Wang;Acta Aeronaut. Astronaut. Sin.,2016

4. TurboElectric Distributed Propulsion (TeDP) Design, Performance, Bene-fits, Concerns and Considerations for both Conventional Non-Superconducting and Cryogenically Cooled Super-conducting Machines in a Propulsion System Architecture for Conventional Tube-and-Wing Configuration;Gibson,2013

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3