An Experimental Investigation into the Effect of Flap Angles for a Piezo-Driven Wing

Author:

DeLuca Anthony M.1,Reeder Mark F.2,Cobb Richard G.2

Affiliation:

1. PhD Candidate, Lieutenant Colonel, USAF

2. Associate Professor

Abstract

This article presents a comparison of results from six degree of freedom force and moment measurements and Particle Image Velocimetry (PIV) data taken on the Air Force Institute of Technology's (AFIT) piezoelectrically actuated, biomimetically designed Hawkmoth, Manduca Sexta, class engineered wing, at varying amplitudes and flapping frequencies, for both trimmed and asymmetric flapping conditions to assess control moment changes. To preserve test specimen integrity, the wing was driven at a voltage amplitude 50% below the maximum necessary to achieve the maximal Hawkmoth total stroke angle. 86° and 65° stroke angles were achieved for the trimmed and asymmetric tests respectively. Flapping tests were performed at system structural resonance, and at ±10% off system resonance at a single amplitude, and PZT power consumption was calculated for each test condition. Two-dimensional PIV visualization measurements were taken transverse to the wing planform, recorded at the mid-span, for a single frequency and amplitude setting, for both trimmed and asymmetric flapping to correlate with the 6-DoF balance data. Linear velocity data was extracted from the 2-D PIV imagery at ± 1/2 and ±1 chord locations above and below the wing, and the mean velocities were calculated for four separate wing phases during the flap cycle. The mean forces developed during a flap cycle were approximated using a modification of the Rankine-Froude axial actuator disk model to calculate the transport of momentum flux as a measure of vertical thrust produced during a static hover flight condition. Values of vertical force calculated from the 2-D PIV measurements were within 20% of the 6-DOF force balance experiments. Power calculations confirmed flapping at system resonance required less power than at off resonance frequencies, which is a critical finding necessary for future vehicle design considerations.

Publisher

SAGE Publications

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation into Reynolds number effects on a biomimetic flapping wing;International Journal of Micro Air Vehicles;2018-01-03

2. Onboard/Offboard Sensor Fusion for High-Fidelity Flapping-Wing Robot Flight Data;Journal of Guidance, Control, and Dynamics;2017-08

3. Varying Reynolds Number of Biomimetic Flapping Wing By Changing Air Density and Wing Length;34th AIAA Applied Aerodynamics Conference;2016-06-10

4. Active filter driver for piezo-actuators for flapping-wing micro air vehicles;International Journal of Micro Air Vehicles;2016-03

5. Evaluation of the Thorax of Manduca Sexta for Flapping Wing Micro Air Vehicle Applications;International Journal of Micro Air Vehicles;2014-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3