The aerodynamics of hovering insect flight. I. The quasi-steady analysis

Author:

Abstract

The conventional aerodynamic analysis of flapping animal flight invokes the ‘quasisteady assumption’ to reduce a problem in dynamics to a succession of static conditions: it is assumed that the instantaneous forces on a flapping wing are equivalent to those for steady motion at the same instantaneous velocity and angle of attack. The validity of this assumption and the importance of unsteady aerodynamic effects have long been controversial topics. Weis-Fogh tested the assumption for hovering animal flight, where unsteady effects are most pronounced, and concluded that most insects indeed hover according to the principles of quasi-steady aerodynamics. The logical basis for his conclusion is reviewed in this paper, and it is shown that the available evidence remains ambiguous. The aerodynamics of hovering insect flight are re-examined in this series of six papers, and a conclusion opposite to Weis-Fogh’s is tentatively reached. New morphological and kinematic data for a variety of insects are presented in papers II and III, respectively. Paper IV offers an aerodynamic interpretation of the wing kinematics and a discussion on the possible roles of different aerodynamic mechanisms. A generalized vortex theory of hovering flight is derived in paper V, and provides a method of estimating the mean lift, induced power and induced velocity for unsteady as well as quasi-steady flight mechanisms. The new data, aerodynamic mechanisms and vortex theory are all combined in paper VI for an analysis of the lift and power requirements and other mechanical aspects of hovering flight. A large number of symbols are needed for the morphological, kinematic and aerodynamic analyses. Most of them appear in more than one paper of the series, and so a single comprehensive table defining the major symbols from all of the papers is presented at the end of this paper.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference11 articles.

1. Abbott I. H. & Doenhoff A. E. von 1959 Theory of wingsections. New York: Dover

2. Insect Aerodynamics: Vertical Sustaining Force in Near-Hovering Flight

3. Effectiveness and flight of small insects. Ann. ent;Bennett L.;Soc. Am.,1973

4. THE FLIGHT OF BIRDS

5. Measurements of unsteady periodic forces generated by the blowfly flying in a wind tunnel. J. exp;Buckholtz R. H.;Biol.,1981

Cited by 556 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3