A Combined Experimental and Analytical Approach for the Simulation of the Sound Transmission Loss of Multilayer Glazing Systems

Author:

Ruggeri Paolo1,Peron Fabio1,Granzotto Nicola2,Bonfiglio Paolo3

Affiliation:

1. Department of Design and Planning in Complex Environments, IUAV University of Venice

2. Department of Industrial Engineering, University of Padua

3. Engineering Department, University of Ferrara

Abstract

In order to ensure acoustic comfort of living spaces, nowadays façade systems having high performance are required. Within such context the glazing systems play a key role in achieving high levels of sound insulation. The characteristics of sound insulation of such systems can be determined by analytical methods that make use of experimental characterizations of the physical and mechanical parameters of these systems. In this work a combined experimental and analytical approach for sound transmission loss prediction of glazing systems is presented. In particular, the mechanical properties of monolithic and multilayer glasses with viscoelastic interlayer made of polyvinyl butyral (PVB) are measured using resonance curve method of flexural waves on glass beams with different boundary conditions. In order to achieve reliable input mechanical data (Young's modulus and loss factor), tested beams are characterized in free-free and elastic constraints boundary conditions, respectively. The elastic constrain boundary conditions are realized following the same specifications of ISO Standard 10140 series for larger panels. Starting from the proposed mechanical characterization, the diffuse field sound transmission loss of glass panels has been predicted through an analytical model for solid elastic layers. Results from the above-mentioned procedure are compared with laboratory measurements. From the analysis it will be shown a better accuracy in determining the sound transmission loss of panels when the elastic constrain boundary conditions are applied to the representative beams.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3