Vibration Control of Vehicle Seat Integrating with Chassis Suspension and Driver Body Model

Author:

Du Haiping1,Li Weihua2,Zhang Nong3

Affiliation:

1. School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2552, Australia

2. School of Mechanical, Material, and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2552, Australia

3. Mechatronics and Intelligent Systems, Faculty of Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia

Abstract

Vehicle seat suspension is one of very important components to provide ride comfort, in particular, commercial vehicles, to reduce driver fatigue due to long hours driving. This paper presents a study on active control of seat suspension to reduce vertical vibration transmitted from uneven road profile to driver body. The control problem will be firstly studied by proposing an integrated seat suspension model which includes vehicle chassis suspension, seat suspension, and driver body model. This is a new concept in the field of study because most of the current active and semi-active seat suspension studies only consider seat suspension or seat suspension with human body model, and road disturbance is generally assumed to be applied to the cabin floor directly. Controller design based an integrated model will enable the seat suspension to perform in a scenario where vibration caused by road disturbance is transmitted from wheel to seat frame and ride comfort performance is evaluated in terms of human body instead of seat frame acceleration. A static output feedback controller is then designed for the seat suspension with using measurement available signals. Driver mass variation and actuator saturation are also considered in the controller design process. The conditions for designing such a controller are derived in terms of linear matrix inequalities (LMIs). Finally, numerical simulations are used to validate the effectiveness of the proposed control strategy. It is shown from the driver body acceleration responses under both bump and random road disturbances that the newly designed seat suspension can improve vehicle ride comfort regardless of driver body mass variation.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3