Topology Optimization of Multi-Loaded Structures with Mixed Finite Elements

Author:

Bruggi Matteo1,Cinquini Carlo1

Affiliation:

1. Department of Structural Mechanics University of Pavia, Pavia, Italy

Abstract

The paper presents a topology optimization formulation that uses mixed-finite elements, here specialized for the design of multi-loaded structures. The discretization scheme adopts stresses as primary variables in addition to displacements which usually are the only variables considered. Two dual variational formulations based on the Hellinger-Reissner variational principle are presented in continuous and discrete form. The use of the mixed approach coupled with the choice of nodal densities as optimization variables of the topology problem lead to 0–1 checkerboard-free solutions even in the case of multi-loaded structures design. The method of moving asymptotes (MMA) by Svanberg (1984) is adopted as minimization algorithm. Numerical examples are provided to show the capabilities of the presented method to generate families of designs responding to different requirements depending on stiffness criteria for common structural multi-load problems. Finally the ongoing research concerning the presence of stress constraints and the optimization of incompressible media is outlined.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3