Inelastic Dynamic Response of RC Bridges Subjected to Spatial Non-Synchronous Earthquake Motion

Author:

Tzanetos N.1,Elnashai A.S.1,Hamdan F.H.1,Antoniou S.1

Affiliation:

1. Department of Civil and Environmental Engineering Imperial College, London, UK

Abstract

The assumption that earthquake response of extended structures, of which bridges is one example, may be studied ignoring the possibility of out-of-synch motion of various supports is examined in this paper. The purpose is to assess whether the reduction of dynamic response is sufficient to offset the increase in relative displacements, due to independent motion of different supports.The paper starts with a review of possible damage patterns due to asynchronous motion. Thereafter, a brief literature review is undertaken, followed by an assessment of the status of seismic design codes concerning this issue. Advanced inelastic analysis, using sophisticated material models and analysis techniques, is then employed to explore characteristics of input motion and structural configuration, which may lead to unconservative results from conventional (synchronous) analysis. Natural and artificial earthquake records are applied, representing travelling wave as well as geometric incoherence effects. Two model structures of medium span RC bridges are studied, subjected to different boundary conditions that influence the mode contributions. This is undertaken under transverse, longitudinal and vertical earthquake motion. The large volume of results, represented as displacement and force time-histories as well as Fourier amplitude spectra of the acceleration response, are distilled and used to assess the balance between dynamic de-tuning and static relative displacements. It is concluded that the conventional synchronous case provides conservative results for vertical vibrations. However, unconservative results, of up to 30%, are obtained for transverse and longitudinal response of short periods of structural vibrations, as well as cases where the higher modes of response are likely to be excited.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3