Vulnerability of suspension bridges to spatially variable vertical ground motions

Author:

Taslimi Arsam1ORCID,Petrone Floriana1ORCID

Affiliation:

1. Department of Civil & Environmental Engineering, University of Nevada, Reno, Reno, NV, USA

Abstract

This study investigates the vulnerability of long-span suspension bridges to spatially variable vertical ground motions (SV-VGMs). While of recognized importance, a comprehensive understanding of this topic has been traditionally limited by the unavailability of an adequate number of arrays of motions. In this work, 10 simulations of a large-magnitude Hayward Fault earthquake are utilized to perform site-specific structural response assessments of a suspension bridge under different load scenarios. A detailed nonlinear model representative of the West San Francisco-Oakland Bay Bridge is employed as the case study structure. Four sets of nonlinear time-history analyses are performed with and without VGMs and with and without the incorporation of spatial variability to offer the basis for a complete comparison of the demand distributions across different load cases. Results indicate that VGMs largely influence the response of the bridge decks in the vertical direction, with an increase in drifts up to 2× for the case of synchronous input and up to 2.5× for the case of asynchronous inputs. The analysis of the bridge response in the time and frequency domain across all load cases reveals a high sensitivity of the decks’ response to minor time lags in input motions of comparable amplitude, which are seen to activate the contribution of higher modes to the structural response. Evidence from this study points to the potential of severely underestimating structural demands if the (even limited) spatial variability of the input motions is not incorporated correctly. For the case study structure, the probability of exceeding the onset of nonlinearity in the short decks at the design earthquake level is seen to increase by a factor of about two when considering SV-VGMs as opposed to synchronous horizontal motions only.

Funder

Pacific Earthquake Engineering Research Center, University of California Berkeley

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3