Interaction between Flexure and Shear on the Debonding of RC Beams Retrofitted with Compression Face Plates

Author:

Ali M.S. Mohamed1,Oehlers D.J.2,Bradford M.A.3

Affiliation:

1. Former postgraduate Adelaide University, Bridges Division, Central Road Research Institute, New Delhi 110-020, India

2. Department of Civil & Environmental Engineering, Adelaide University, S.A. 5005, Australia

3. School of Civil Engineering, University of New South Wales, NSW. 2052, Australia

Abstract

Steel and FRP plating reinforced concrete structures is increasingly being used for retrofitting. Plates can be bonded to any surface of a beam or slab, although it is common practice to adhesively bond plates to the tension faces. The addition of these tension face plates reduces the sectional ductility of the beam. Furthermore, these tension face plates are prone to premature debonding because the stress concentrations induced by these plates overlap with those induced by the tension reinforcing bars adjacent to the plate. Solutions to these two problems, which are the subject of this paper, consist of: adhesively bonding plates to the compression faces to counterbalance the tension face plates and, hence, improve the beam sectional ductility; and to extend the tension face plates, in continuous beams, past the points of contraflexure so that they terminate in a compression face. In this paper, eleven new tests on 340 mm deep beams are presented that show that compression face plates are less prone to debonding than tension face plates.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3