Nonlinear FEA of mechanical anchorages on CFRP-to-concrete bonded joint

Author:

Yilmaz Tolga1,Arslan Barış1,Anil Özgür2

Affiliation:

1. Research Assistant, Civil Engineering Department, Eskişehir Osmangazi University, Eskişehir, Turkey

2. Professor, Civil Engineering Department, Gazi University, Ankara, Turkey (corresponding author: )

Abstract

The debonding of carbon fibre-reinforced polymer (CFRP) strips from the surface of concrete is one of the main premature failure modes for concrete beams that are externally strengthened with CFRP strips. Many anchorage systems are developed to prevent or delay the debonding process in these beams in order to improve the ultimate load capacities. In this study, nonlinear finite-element analyses (FEAs) are performed by employing ABAQUS software to describe the load-deflection behaviour and ultimate loading capacities of concrete beams whose flexure has been strengthened using externally bonded CFRP strips with mechanical anchorages. First, the nonlinear finite-element model results are validated using the results of an experimental study previously carried out by the authors. In the experimental study, the variables investigated are the CFRP strip width and the number and the arrangement of the mechanical anchorages. A good agreement is demonstrated between the numerical and the experimental results. Then, a parametric study is conducted to investigate the effects of the mechanical anchorages on the ultimate load capacities of concrete beams. Consequently, the variable, the CFRP bonding length, is included into the finite-element models that are corrected with the experimental results, and equations involving many variables concerned with the ultimate loading capacities are suggested. Finally, an ultimate load capacity multiplier is proposed enabling the calculation of the ultimate load capacities of beams mechanically anchored with CFRP strips, with regard to the CFRP strip width, the bonding length, the number of mechanical anchorages and the arrangement of the variables.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3