Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived from Human Pluripotent Stem Cells

Author:

Bai Hao1,Gao Yongxing1,Hoyle Dixie L.1,Cheng Tao23,Wang Zack Z.123

Affiliation:

1. a Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

2. b State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China

3. c Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, People's Republic of China

Abstract

Abstract Transplantation of vascular cells derived from human pluripotent stem cells (hPSCs) offers an attractive noninvasive method for repairing the ischemic tissues and for preventing the progression of vascular diseases. Here, we found that in a serum-free condition, the proliferation rate of hPSC-derived endothelial cells is quickly decreased, accompanied with an increased cellular senescence, resulting in impaired gene expression of endothelial nitric oxide synthase (eNOS) and impaired vessel forming capability in vitro and in vivo. To overcome the limited expansion of hPSC-derived endothelial cells, we screened small molecules for specific signaling pathways and found that inhibition of transforming growth factor-β (TGF-β) signaling significantly retarded cellular senescence and increased a proliferative index of hPSC-derived endothelial cells. Inhibition of TGF-β signaling extended the life span of hPSC-derived endothelial and improved endothelial functions, including vascular network formation on Matrigel, acetylated low-density lipoprotein uptake, and eNOS expression. Exogenous transforming growth factor-β1 increased the gene expression of cyclin-dependent kinase inhibitors, p15Ink4b, p16Ink4a, and p21CIP1, in endothelial cells. Conversely, inhibition of TGF-β reduced the gene expression of p15Ink4b, p16Ink4a, and p21CIP1. Our findings demonstrate that the senescence of newly generated endothelial cells from hPSCs is mediated by TGF-β signaling, and manipulation of TGF-β signaling offers a potential target to prevent vascular aging.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3