Maximum of the Critical Galton--Watson Processes and Left-Continuous Random Walks
Author:
Publisher
Society for Industrial & Applied Mathematics (SIAM)
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Link
http://epubs.siam.org/doi/pdf/10.1137/S0040585X97975903
Reference8 articles.
1. On the Maximum Sequence in a Critical Branching Process
2. On distribution tails and expectations of maxima in critical branching processes
3. The maximum in critical Galton–Watson and birth and death processes
4. On the maximum and absorption time of left-continuous random walk
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Large deviations of branching process in a random environment. II;Discrete Mathematics and Applications;2021-12-01
2. Stable-like fluctuations of Biggins’ martingales;Stochastic Processes and their Applications;2019-11
3. A Structured Markov Chain Approach to Branching Processes;Stochastic Models;2015-06-24
4. Weighted moments for the limit of a normalized supercritical Galton–Watson process;Comptes Rendus Mathematique;2013-10
5. Weighted moments of the limit of a branching process in a random environment;Proceedings of the Steklov Institute of Mathematics;2013-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3