Author:
Liang Xingang,Liu Quansheng
Subject
Mathematics (miscellaneous)
Reference26 articles.
1. V. I. Afanasyev, “On the maximum of a subcritical branching process in a random environment,” Stoch. Processes Appl. 93, 87–107 (2001).
2. G. Alsmeyer and A. Iksanov, “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks,” Electron. J. Probab. 14, 289–313 (2009).
3. G. Alsmeyer and D. Kuhlbusch, “Double martingale structure and existence of ϕ-moments for weighted branching processes,” Münster J. Math. 3, 163–212 (2010).
4. G. Alsmeyer and U. Rösler, “On the existence of ϕ-moments of the limit of a normalized supercritical Galton-Watson process,” J. Theor. Probab. 17, 905–928 (2004).
5. K. B. Athreya and S. Karlin, “On branching processes with random environments. I: Extinction probabilities,” Ann. Math. Stat. 42, 1499–1520 (1971).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献