Embolism resistance of conifer roots can be accurately measured with the flow-centrifuge method

Author:

Bouche Pauline S.,Jansen Steven,Cochard Hervé,Burlett Regis,Capdeville Gaelle,Delzon Sylvain

Abstract

Resistance to embolism of conifer branches has commonly been studied with the flow-centrifuge technique (Cavitron) to carry out routine measurements. The aim of this study was to test the accuracy of the Cavitron for measurements on conifer roots. Based on earlier findings, it was suggested that the application of the flow-centrifuge technique to roots may not be free from artefacts due to potential torus aspiration when the pressure gradient between the sample ends is high. Here, three different protocols were used to obtain vulnerability curves in Pinus pinaster and Pseudotsuga menziesii roots: no water pressure gradient, and low and high water pressure gradient. In addition water extraction curves were obtained to only estimate the water released from conduits by embolism. Water extraction curves showed no water release caused by embolism before -1.3 and -2.5 MPa for P. pinaster and P. menziesii, respectively. The results illustrated discrepancies between these protocols: roots measured with the high and low pressure gradient protocols appeared erroneously more vulnerable to embolism than roots measured with no pressure gradient. In addition, pit anatomical observations of roots showed non-punctured tori and a high flexibility of the margo, which may increase the risk of torus aspiration. All together these results suggest that the early loss of hydraulic conductivity observed for the low and high pressure gradient protocols was not due to embolism but rather to a torus aspiration artefact when the pressure gradient is too high. We conclude that the no pressure gradient protocol provides a suitable method and that high vulnerability to embolism reported in previous studies for conifer roots should be interpreted with caution in the light of our findings.

Publisher

Universite de Bordeaux

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3