Accurate varietal classification and quantification of key quality compounds of grape extracts using the absorbance-transmittance fluorescence excitation emission matrix (A-TEEM) method and machine learning

Author:

Gilmore Adam M.ORCID,Sui Qiang,Blair Bryant,Pan Bruce S.

Abstract

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins and identification of grape varieties are both important for effective quality control of harvesting and initial processing for winemaking. Current reference technologies, including High-Performance Liquid Chromatography (HPLC), can be rate-limiting and too complex and expensive for effective field operations. In this paper, we analyse robotically prepared grape extracts from several key varieties (n = Calibration/n = Prediction samples), including Cabernet-Sauvignon (64/10), Grenache (16/4), Malbec (14/4), Merlot (56/10), Petite Sirah (52/10), Pinot noir (54/8), Syrah (20/2), Teroldego (14/2) and Zinfandel (62/12). Key phenolic and anthocyanin parameters measured by HPLC included Catechin, Epicatechin, Quercetin Glycosides, Malvidin 3-glucoside, Total Anthocyanins and Polymeric Tannins. Split samples diluted 50-fold in 50 % EtOH pH 2 were analysed in parallel using the A-TEEM method following Multi-block Data Fusion of the absorbance and unfolded EEM data. A-TEEM chemical data were calibrated (n = 390) using Extreme Gradient Boosting (XGB) Regression and evaluated based on the Root Mean Square Error of the Prediction (RMSEP), the Relative Error of Prediction (REP) and Coefficient of Variation (R2P) of the Prediction data (n = 62). The regression results yielded an average Relative Error of Prediction (REP) of 5.89 ± 2.47 % and an R2P of 0.941 ± 0.025. While we consider the REP values to be in the acceptable range at significantly < 10 %, we acknowledge that both the grape extraction method repeatability and HPLC reference method sample repeatability (5-8 % RSD) likely constituted the major sources of variation compared to the A-TEEM instrumental sample repeatability (< 2 % RSD). The varietal classification was analysed using Agglomerative Hierarchical Cluster Analysis (HCA) and XGB discrimination analysis of the multi-block data. The classification results yielded 100 % True Positive and True Negative responses for the Calibration and Prediction Data for all tested varieties. We conclude that the A-TEEM method requires a minimum of sample preparation and rapid acquisition times (< 1 min) and can serve as an accurate secondary method for both grape varietal identification and phenolic quantification. Importantly, the software application of the regression and classification models can be effectively automated for operators.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3