Machine Learning Model Stability for Sub-Regional Classification of Barossa Valley Shiraz Wine Using A-TEEM Spectroscopy

Author:

Wang Han1,Jeffery David W.1ORCID

Affiliation:

1. School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia

Abstract

With a view to maintaining the reputation of wine-producing regions among consumers, minimising economic losses caused by wine fraud, and achieving the purpose of data-driven terroir classification, the use of an absorbance–transmission and fluorescence excitation–emission matrix (A-TEEM) technique has shown great potential based on the molecular fingerprinting of a sample. The effects of changes in wine composition due to ageing and the stability of A-TEEM models over time had not been addressed, however, and the classification of wine blends required investigation. Thus, A-TEEM data were combined with an extreme gradient boosting discriminant analysis (XGBDA) algorithm to build classification models based on a range of Shiraz research wines (n = 217) from five Barossa Valley sub-regions over four vintages that had aged in bottle for several years. This spectral fingerprinting and machine learning approach revealed a 100% class prediction accuracy based on cross-validation (CV) model results for vintage year and 98.8% for unknown sample prediction accuracy when splitting the wine samples into training and test sets to obtain the classification models. The modelling and prediction of sub-regional production area showed a class CV prediction accuracy of 99.5% and an unknown sample prediction accuracy of 93.8% when modelling with the split dataset. Inputting a sub-set of the current A-TEEM data into the models generated previously for these Barossa sub-region wines yielded a 100% accurate prediction of vintage year for 2018–2020 wines, 92% accuracy for sub-region for 2018 wines, and 91% accuracy for sub-region using 2021 wine spectral data that were not included in the original modelling. Satisfactory results were also obtained from the modelling and prediction of blended samples for the vintages and sub-regions, which is of significance when considering the practice of wine blending.

Funder

School of Agriculture, Food and Wine, the University of Adelaide

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3