Influence of succinic acid on <i>Oenococcus oeni</i> and malolactic fermentation

Author:

Torres-Guardado RafaelORCID,Rozès Nicolas,Esteve-Zarzoso BraulioORCID,Reguant Cristina,Bordons AlbertORCID

Abstract

As a consequence of the alcoholic fermentation carried out by yeasts in wine, several compounds can be delivered to the medium, promoting or inhibiting the malolactic fermentation (MLF) and the lactic acid bacteria, mainly Oenococcus oeni. Succinic acid is one of these compounds and is an example of the interaction between yeasts, including non-Saccharomyces species, and O. oeni. However, the influence of succinic acid on the MLF has been researched very little as yet. In this work, we study the influence of succinic acid and pH on O. oeni CH11 and PSU-1 strains, both during MLF and in resting cell experiments. Moreover, we analysed the relative expression of some significant genes related to stress and malolactic activity to determine how the O. oeni strains were affected by the succinic acid. The results showed that the succinic acid could act as an MLF inhibitor at concentrations higher than 1 g/L, but it can be beneficial at 0.5 g/L. This variable effect also depends on the strains and other winemaking conditions, mainly pH, which influences the dissociated and undissociated forms of both acids. The inhibiting effect of succinic seems clearer when it is at a molar concentration higher than that of L-malic acid. Experiments with resting cells have confirmed that O. oeni consumes less L-malic acid when succinic acid is higher than 1 g/L. Genetic expression experiments showed that in the presence of succinic acid (2 g/L), gene hsp18 encoding stress protein was up-regulated in strain CH11, suggesting a good response and adaptation of this strain to stress. On the other hand, genes mleA and mleP, which are related to malolactic activity, were not affected by succinic acid, except for strain PSU-1 at pH 4.0. Further research is necessary to understand better the effects of succinic acid on O. oeni and MLF.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3