The substratostat - an automated near-infrared spectroscopy-based variable-feed system for the continuous alcoholic fed-batch fermentation of high gravity grape must at static sugar concentrations

Author:

Frohman Charles A,Mira de Orduña Heidinger Ramón

Abstract

Aim: High sugar concentrations in musts cause a hyperosmotic stress response in Saccharomyces cerevisiae increasing the risk of sluggish and stuck alcoholic fermentations and/or causing high acetic acid levels. Applying a fed-batch technique where sugar levels are kept at a constant, low rate throughout fermentations reduces this stress but requires in-situ quantification of sugars and process automation for practicability. The aim of this work was to develop and validate a near-infrared (NIR) spectroscopy method allowing for the continuous in-situ quantification of total fermentable sugars in fully turbid alcoholic fermentations of grape musts. Calibration models for glucose, fructose and the fermentation product ethanol were also established.Methods and results: A research Fourier-transform NIR spectrophotometer equipped with a transflectance probe was used to acquire spectra from 240 natural and semisynthetic standards from fermentations conducted using varying concentrations of yeast and yeast nutrients. Using chemometric software, calibration models for total sugars, glucose, fructose and ethanol demonstrated R2 values >0.93 and prediction error (RMSEP) values of 11.6 g l-1, 12.3 g l-1, 10.2 g l-1, and 0.328 % v/v, respectively. The method was integrated with modern process automation technology and was able to maintain sugar concentrations within 5 g l-1 of the 45 g l-1 setpoint adjusted during alcoholic fermentations.Conclusions: The NIR calibration models generated allow prediction of total sugar levels accurately enough to conduct fully automated fed-batch grape must fermentations at constant substrate concentrations. Application of a transflectance probe measuring a high proportion of back-scattered radiation proved useful and necessary considering the high degree of turbidity during fermentations. Placement of the measurement probe in a recirculation loop decreased interference from biomass sedimentation and adherence of CO2 bubbles.Significance and impact of the study: This study presents a fully automated system to carry out fed-batch fermentations which allow circumventing the hyperosmotic stress response of S. cerevisiae during alcoholic fermentations. Calibrated for other substrates, the system may be used in other food and non-food fermentations, too.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3