Affiliation:
1. Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
2. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Abstract
С помощью роста в $\mathrm{SL}_2(\mathbb{F}_p)$ доказано, что для любого простого $p$ и натурального $u$ найдутся натуральные $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, и $a < p$, $(a, p)=1$, такие, что неполные частные цепной дроби $a/q$ ограничены абсолютной константой.
Библиография: 21 название.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献