Affiliation:
1. Математический институт им. В. А. Стеклова Российской академии наук
2. Steklov Mathematical Institute of Russian Academy of Sciences
Abstract
Рассматриваются структуры разрывов в решениях гиперболической системы уравнений. Система уравнений имеет достаточно общий вид и, в частности, может описывать в простейшей постановке продольно-крутильные нелинейные волны в упругих стержнях, а также одномерные волны в неограниченной упругой среде. Ранее свойства разрывов в решениях этих уравнений изучались в предположении, что на разрывах выполняются только соотношения, следующие из законов сохранения продольного импульса и момента импульса вокруг оси стержня, а также условие непрерывности перемещений. Была изучена ударная адиабата. В данной работе исследуется стационарная структура разрывов в предположении, что главным, определяющим механизмом внутри структуры является вязкость. Показано, что некоторые части ударной адиабаты соответствуют эволюционным разрывам, не имеющим структуры. Кроме того, показано, что существуют особые разрывы, на которых должно выполняться дополнительное соотношение, которое находится как условие существования структуры разрыва. Дополнительное соотношение зависит от процессов, происходящих в структуре. Особый разрыв удовлетворяет условиям эволюционности, которые отличаются от известных условий Лакса. Обсуждаются выводы, которые могут представлять интерес также для других систем гиперболических уравнений.
Библиография: 58 названий.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modern Methods of Mechanics;Trudy Matematicheskogo Instituta imeni V.A. Steklova;2023-09
2. interaction of shock waves in two-dimensional isobaric media;Uspekhi Matematicheskikh Nauk;2023