Diffusion of muonic hydrogen in hydrogen gas and the measurement of the 1$s$ hyperfine splitting of muonic hydrogen

Author:

Nuber Jonas12,Adamczak A.3,Abdou Ahmed M.4,Affolter L.2,Amaro F. D.5,Amaro Pedro6,Antognini A.12,Carvalho P.6,Chang Y. -H.7,Chen T. -L.7,Chen W. -L.7,Fernandes L. M. P.5,Ferro M.6,Goeldi D.2,Graf Thomas4,Guerra M.6,Hänsch T. W.89,Henriques C. A. O.5,Hildebrandt M.1,Indelicato P.10,Kara O.2,Kirch K.12,Knecht A.1,Kottmann F.12,Liu Y.-W.7,Machado J.6,Marszalek M.12,Mano R. D. P.5,Monteiro C. M. B.5,Nez F.10,Ouf A.11,Paul N.10,Pohl R.11,Rapisarda E.1,dos Santos J. M. F.5,Santos J. P.6,Silva P. A. O. C.5,Sinkunaite L.12,Shy J. -T.7,Schuhmann K.2,Rajamohanan S.11,Soter A.2,Sustelo L.6,Taqqu David12,Wang L. -B.7,Wauters F.11,Yzombard P.10,Zeyen M.2,Zhang J.2

Affiliation:

1. Paul Scherrer Institute

2. Swiss Federal Institute of Technology in Zurich (ETH)

3. Institute of Nuclear Physics Polish Academy of Sciences

4. University of Stuttgart

5. University of Coimbra

6. NOVA University Lisbon

7. National Tsing Hua University

8. Ludwig Maximilian University of Munich

9. Max Planck Institute of Quantum Optics

10. Kastler-Brossel Laboratory

11. Johannes Gutenberg University of Mainz

Abstract

The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen (\muμp) with 1 ppm accuracy by means of pulsed laser spectroscopy. In the proposed experiment, the \muμp atom is excited by a laser pulse from the singlet to the triplet hyperfine sub-levels, and is quenched back to the singlet state by an inelastic collision with a H_22 molecule. The resulting increase of kinetic energy after this cycle modifies the \muμp atom diffusion in the hydrogen gas and the arrival time of the \muμp atoms at the target walls. This laser-induced modification of the arrival times is used to expose the atomic transition. In this paper we present the simulation of the \muμp diffusion in the H_22 gas which is at the core of the experimental scheme. These simulations have been implemented with the Geant4 framework by introducing various low-energy processes including the motion of the H_22 molecules, i.e. the effects related with the hydrogen target temperature. The simulations have been used to optimize the hydrogen target parameters (pressure, temperatures and thickness) and to estimate signal and background rates. These rates allow to estimate the maximum time needed to find the resonance and the statistical accuracy of the spectroscopy experiment.

Funder

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

European Research Council

Fundação para a Ciência e a Tecnologia

Ministère de l'Enseignement Supérieur et de la Recherche

Ministère de l'Europe et des Affaires Étrangères

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Stichting SciPost

Subject

Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3