Viability of rotation sensing using phonon interferometry in Bose-Einstein condensates

Author:

Woffinden Charles1,Groszek Andrew J.1,Gauthier Guillaume1,Mommers Bradley J.1,Bromley Michael W. J.12,Haine Simon A.3,Rubinsztein-Dunlop Halina1,Davis Matthew J.1,Neely Tyler W.1,Baker Mark41

Affiliation:

1. University of Queensland

2. University of Southern Queensland

3. Australian National University

4. Defence Science and Technology Organisation

Abstract

We demonstrate the use of a ring-shaped Bose-Einstein condensate as a rotation sensor by measuring the interference between two counter-propagating phonon modes imprinted azimuthally around the ring. We observe rapid decay of the excitations, quantified by quality factors of at most Q ≈ 27. We numerically model our experiment using the c-field methodology, allowing us to estimate the parameters that maximise the performance of our sensor. We explore the damping mechanisms underlying the observed phonon decay, and identify two distinct Landau scattering processes that each dominate at different driving amplitudes and temperatures. Our simulations reveal that Q is limited by strong damping of phonons even in the zero temperature limit. We perform an experimental proof-of-principle rotation measurement using persistent currents imprinted around the ring. We demonstrate a rotation sensitivity of up to \Delta \Omega ≈ 0.3 rad s^{-1}ΔΩ0.3rads1 from a single image, with a theoretically achievable value of \Delta \Omega ≈ 0.04 rad s^{-1}ΔΩ0.04rads1 in the atomic shot-noise limit. This is a significant improvement over the shot-noise-limited \Delta \Omega ≈ 1 rad s^{-1}ΔΩ1rads1 sensitivity obtained by Marti et al. [Phys. Rev. A 91, 013602 (2015)] for a similar setup.

Funder

Australian Research Council

Defence Science and Technology Group

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3